SpaceX smashes record with launch of 143 small satellites – Spaceflight Now
SpaceX launched a Falcon 9 rocket Sunday from Cape Canaveral with 143 small satellites, a record number of spacecraft on a single mission, giving a boost to startup space companies and stressing the U.S. military’s tracking network charged with sorting out the locations of all objects in orbit.
The 143 small spacecraft, part of SpaceX’s “Transporter-1” rideshare mission, took off from pad 40 at Cape Canaveral Space Force Station at 10 a.m. EST (1500 GMT), a day after thick cloud cover prevented the rocket from leaving Earth.
The 229-foot-tall (70-meter) Falcon 9 rocket soared toward the southeast from the launch pad at Cape Canaveral, then vectored its thrust to fly on a coast-hugging trajectory toward South Florida, before flying over Cuba, the Caribbean Sea, and Central America.
The unusual trajectory was similar to the track followed by a Falcon 9 launch in August 2020, which was the first launch since the 1960s from Florida’s Space Coast to head into a polar orbit.
The Falcon 9’s reusable first stage booster — flying for the fifth time — landed on SpaceX’s “Of Course I Still Love You” drone ship in the Atlantic Ocean southeast of Miami nearly 10 minutes after liftoff. SpaceX said it also retrieved the rocket’s payload fairing halves after they parachuted back to Earth in the Atlantic.
The rocket’s second stage powered into orbit with its 143 satellite passengers, flew over Antarctica, then briefly reignited its engine while heading north over the Indian Ocean.
The launch Sunday carried payloads for Planet, Swarm Technologies, Kepler Communications, Spire, Capella Space, ICEYE, NASA, and a host of other customers from 11 countries. The payloads ranged in size from CubeSats to microsatellites weighing several hundred pounds.
The Falcon 9 rocket will also delivered 10 more of SpaceX’s Starlink internet satellites into space, the first Starlink craft to head for a polar orbit.
SpaceX aimed to placed the satellites into an orbit roughly 326 miles (525 kilometers) in altitude, with an inclination of 97.5 degrees to the equator. The company confirmed an on-target orbital injection after the second burn of the Falcon 9’s upper stage engine, setting the stage for a carefully-choreographed payload deployment sequence that took more than a half-hour to complete.
The mission Sunday broke the record number of satellites on a single launch, exceeding the 104 spacecraft launched on an Indian Polar Satellite Launch Vehicle in 2017.
Record rideshare launch challenges tracking capabilities, raises questions for regulators
U.S. military radars and optical sensors scattered around the world were ready to detect and track all 143 satellites after separation from the Falcon 9 rocket.
That data will be fed to the U.S. Space Force’s 18th Space Control Squadron at Vandenberg Air Force Base, California, where sophisticated computers and military personnel will generate datasets, or orbital elements, for each object and add them to the catalog of more than 27,000 human-made objects tracked in orbit.
The Space Force is responsible for maintaining the catalog of artificial space objects, and screening for potential collisions between satellites and space debris, which could generate even more junk in orbit.
“We’re in the business of space domain awareness,” said Lt. Col. Justin Sorice, commander of the 18th Sapce Control Squadron, in an interview with Spaceflight Now last year. “That means we want to understand what’s going on in the domain so that we can be responsible and we can alert owner-operators.
“We’re kind of like the lighthouse,” Sorice said. “We’re not the air traffic controllers, so I can’t tell other owner-operators from either the U.S. or other countries to move their satellites. But what we can do is give them plenty of warning.”
But it could take some time to sort identify each of the 143 satellites, along with debris generated from the Transporter-1 launch.
“Releasing so many objects on the same launch presents a huge challenge for the people that are tasked to track and identify those objects,” said Brian Weeden, director of program planning and technical advisor for the Secure World Foundation. “It’s really difficult for them to do that unless they have a lot of advance knowledge about how many payloads there are, when are they going to be deployed, what orbit are they deployed in, how are they going to be deployed? There are a lot of little nuances there that can help, but they have to know that information.”
SpaceX is “generally pretty good” about providing the Space Force with information about the orbits targeted by its missions, Weeden said. That helps radars and optical sensors know when and where to look to detect the new satellites.
“Imagine you’re the 18th Space Control Squadron, and you now see, let’s say, 100 things that are all roughly 10-centimeter cubes?” Weeden said. “How the heck do you know which is which?”
Falcon 9 launches carrying batches of 60 Starlink satellites at a time have become the norm, and SpaceX typically releases its orbital targets and deployment times. The process is more simple for a Starlink launch, where SpaceX owns all the satellites, than for a rideshare mission with numerous customers.
“If the satellite operator knows where it is, and can contact their satellite quickly after launch, this is not a huge problem,” Weeden said. “But if they can’t contact quickly after launch, and then they turn to the military for help in trying to find their satellites so they can talk to it, that’s where it becomes a real problem.”
SpaceX provided predicted orbital information to the space traffic management community before the Transporter-1 mission, but only for satellites and support hardware that would separate directly from the Falcon 9 upper stage, not the payloads riding on carrier vehicles, or space tugs, designed to deploy small satellites hours or days later.